A Novel Fractional Order Normalized LMS Algorithm with Direction Optimization
نویسندگان
چکیده
منابع مشابه
Non-linear Fractional-Order Chaotic Systems Identification with Approximated Fractional-Order Derivative based on a Hybrid Particle Swarm Optimization-Genetic Algorithm Method
Although many mathematicians have searched on the fractional calculus since many years ago, but its application in engineering, especially in modeling and control, does not have many antecedents. Since there are much freedom in choosing the order of differentiator and integrator in fractional calculus, it is possible to model the physical systems accurately. This paper deals with time-domain id...
متن کاملA Study on Normalized LMS Algorithm Using Refined Filtering Technique
We investigate the convergence behavior of the normalized least mean square (NLMS) algorithm in the structure of a linear transversal filter. At the n-th iteration, the traditional NLMS transversal filter generates the n-th output signal by using linear convolution of the n-th input vector and the n-th coefficient vector. Based on this result, the n-th coefficient vector is updated to the n + 1...
متن کاملFractional-order PID controller optimization via improved electromagnetism-like algorithm
Based on the electromagnetism-like algorithm, an evolutionary algorithm, improved EM algorithm with genetic algorithm technique (IEMGA), for optimization of fractional-order PID (FOPID) controller is proposed in this article. IEMGA is a population-based meta-heuristic algorithm originated from the electromagnetism theory. It does not require gradient calculations and can automatically converge ...
متن کاملParticle swarm optimization with fractional-order velocity
This paper proposes a novel method for controlling the convergence rate of a particle swarm optimization algorithm using fractional calculus (FC) concepts. The optimization is tested for several wellknown functions and the relationship between the fractional order velocity and the convergence of the algorithm is observed. The FC demonstrates a potential for interpreting evolution of the algorit...
متن کاملIdentification of Wind Turbine using Fractional Order Dynamic Neural Network and Optimization Algorithm
In this paper, an efficient technique is presented to identify a 2500 KW wind turbine operating in Kahak wind farm, Qazvin province, Iran. This complicated system dealing with wind behavior is identified by using a proposed fractional order dynamic neural network (FODNN) optimized with evolutionary computation. In the proposed method, some parameters of FODNN are unknown during the process of i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC-PapersOnLine
سال: 2016
ISSN: 2405-8963
DOI: 10.1016/j.ifacol.2016.07.527